metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Poly[(\mu_2-N,N-dimethylformamide \kappa^2 O:O(\mu_4$ -terephthalato- $\kappa^4 O: O': O'': O''')$ iron(II)]

Hui Lu,^a Yun-Long Fu,^a Yu Zhang^a and Seik Weng Ng^{b*}

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 10 September 2007; accepted 10 September 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 12.6.

the crystal structure of the title compound, In $[Fe(C_8H_4O_4)(C_3H_7NO)]_n$, the Fe^{II} atom and the terephthalate group occupy special positions of 2/m site symmetry. The Fe^{II} atom is octahedrally coordinated: two O atoms of two dimethylformamide molecules occupy the axial positions, and the equatorial sites are occupied by the carboxylate O atoms of four different terephthalate groups. The compound adopts a polymeric three-dimensional framework structure. The C and N atoms of the dimethylformamide ligand are disordered equally over two sites each, with further disorder of the H atoms.

Related literature

This Fe^{II} compound has the same structure as the Co^{II} analogue (Fu et al., 2004).

Experimental

Crystal data

$[Fe(C_8H_4O_4)(C_3H_7NO)]$	
$M_r = 293.06$	
Orthorhombic, Imma	
a = 19.3652 (15) Å	
b = 7.2856 (6) Å	
c = 8.8571 (7) Å	

Data collection

Bruker APEX area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.357, T_{\max} = 0.909$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.113$ S = 1.08791 reflections 63 parameters

V = 1249.62 (17) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.22 \text{ mm}^{-1}$ T = 295 (2) K $0.25 \times 0.19 \times 0.08 \text{ mm}$

3421 measured reflections 791 independent reflections 730 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.021$

3 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; method used to solve structure: atomic coordinates taken from Fu et al. (2004); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (grant No. 20041031) and the University of Malaya for generously supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2503).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Bruker (2002). SAINT (Version 6.36A) and SMART (Version 6.36A). Bruker AXS Inc., Madison, Wisconsin, USA. Fu, Y.-L., Ren, J.-L. & Ng, S. W. (2004). Acta Cryst. E60, m1507-m1509. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, m2534 [doi:10.1107/S1600536807044091]

Poly[(μ_2 -N,N-dimethylformamide- $\kappa^2 O:O$)(μ_4 -terephthalato- $\kappa^4 O:O':O'':O'''$)iron(II)]

H. Lu, Y.-L. Fu, Y. Zhang and S. W. Ng

Comment

This study continues with the study on $[(C_8H_4O_4)(C_3H_7NO)Co]_n$ (Fu *et al.*, 2004; the present Fe(II) analog is isostructural with the Co(II) analog (Fu *et al.*, 2004).

Experimental

Ferrous chloride tetrahydrate (0.198 g, 1 mmol), terephthalic acid (0.166 g, 1 mmol) and *N*,*N*-dimethylformamide (10 ml) were sealed in a 15-ml, Teflon-lined, stainless-steel bomb, which was heated at 433 K for 2 days. Red crystals were obtained when the bomb was cooled slowly to room temperature; yield 30% based on Fe.

Refinement

The DMF molecule (comprising the O2, N1, C4, C5 and C6 atoms) lies on the Wyckoff 4 e site (of *mm2* symmetry) and is disordered over two positions with respect to its carbon atoms only. As the disorder refined to almost 1/2, the occupancies of these carbon atoms was fixed as 1/4. The three N—C distances were restrained to within ±0.01 Å.

Hydrogen atoms were placed at calculated positions (C—H = 0.93 Å for the sp^2 hybridized parent C atoms and 0.96 Å for the methyl C atoms) and were included in the refinements in the riding model approximation, with U(H) = $1.2U_{eq}$ for the aromatic H atoms and $1.5U_{eq}$ for the methyl H atoms. The two methyl groups were rotated so as to fit the electron density.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of a portion of $[Fe(C_8H_4O_4)(C_3H_7NO)]_n$. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are drawn as spheres of arbitrary radii. The disorder in the DMF molecules is not shown.

Poly[(μ_2 -*N*,*N*-dimethylformamide- $\kappa^2 O:O$) (μ_4 -terephthalato- $\kappa^4 O:O':O'':O'''$)iron(II)]

Crystal data [Fe(C₈H₄O₄)(C₃H₇NO)] $M_r = 293.06$ Orthorhombic, *Imma* Hall symbol: -I 2b 2 a = 19.3652 (15) Å

 $F_{000} = 600$ $D_x = 1.558 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2096 reflections $\theta = 2.5-28.5^{\circ}$

b = 7.2856 (6) Å	$\mu = 1.22 \text{ mm}^{-1}$
c = 8.8571 (7) Å	T = 295 (2) K
$V = 1249.62 (17) \text{ Å}^3$	Block, red
Z = 4	$0.25\times0.19\times0.08~mm$

Data collection

Bruker APEX area-detector diffractometer	791 independent reflections
Radiation source: fine-focus sealed tube	730 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 295(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -25 \rightarrow 24$
$T_{\min} = 0.357, \ T_{\max} = 0.909$	$k = -9 \rightarrow 7$
3421 measured reflections	$l = -8 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_0^2) + (0.0721P)^2 + 1.8869P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
791 reflections	$\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$
63 parameters	$\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe1	0.5000	0.5000	0.5000	0.0209 (3)	
01	0.42136 (10)	0.5968 (3)	0.3639 (3)	0.0461 (6)	
O2	0.5000	0.7500	0.6390 (4)	0.0333 (8)	
N1	0.5000	0.7500	0.8974 (5)	0.0533 (15)	
C1	0.39343 (19)	0.7500	0.3459 (5)	0.0360 (8)	
C2	0.31894 (19)	0.7500	0.2960 (5)	0.0390 (9)	
C3	0.28393 (15)	0.5876 (4)	0.2733 (5)	0.0630 (11)	
Н3	0.3064	0.4766	0.2896	0.076*	
C4	0.5267 (4)	0.7500	0.7594 (8)	0.0380 (16)	0.50
H4	0.5747	0.7500	0.7567	0.046*	0.50
C5	0.5296 (7)	0.7500	1.0396 (10)	0.078 (4)	0.50
H5A	0.5776	0.7814	1.0315	0.117*	0.25

supplementary materials

H5B	0.5252	0.6302	1.0837		0.117*	0.25
H5C	0.5066	0.8384	1.1022		0.117*	0.25
C6	0.4266 (5)	0.7500	0.9021	(13)	0.088 (4)	0.50
H6A	0.4113	0.7010	0.9970		0.133*	0.25
H6B	0.4090	0.6756	0.8213		0.133*	0.25
H6C	0.4099	0.8734	0.8910		0.133*	0.25
Atomic displacer	nent parameters ($(Å^2)$				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0135 (4)	0.0240 (4)	0.0250 (4)	0.000	0.000	0.0017 (2)
01	0.0312 (9)	0.0361 (11)	0.0709 (13)	0.0036 (8)	-0.0270 (9)	0.0003 (9)
O2	0.044 (2)	0.0279 (17)	0.0279 (17)	0.000	0.000	0.000
N1	0.084 (4)	0.046 (3)	0.029 (2)	0.000	0.000	0.000
C1	0.0266 (17)	0.0360 (19)	0.045 (2)	0.000	-0.0180 (15)	0.000
C2	0.0261 (17)	0.0346 (18)	0.056 (2)	0.000	-0.0204 (16)	0.000
C3	0.0374 (17)	0.0293 (14)	0.122 (3)	0.0040 (11)	-0.0381 (19)	0.0023 (17)
C4	0.052 (4)	0.029 (3)	0.033 (3)	0.000	-0.006 (3)	0.000
C5	0.136 (13)	0.068 (7)	0.030 (4)	0.000	-0.010 (6)	0.000
C6	0.125 (12)	0.094 (9)	0.047 (6)	0.000	0.026 (7)	0.000

Geometric parameters (Å, °)

Fe1—O1 ⁱ	2.0663 (17)	N1—C6 ^{iv}	1.422 (9)
Fe1—O1 ⁱⁱ	2.0663 (17)	C1—O1 ^v	1.250 (2)
Fe1—O1	2.0663 (17)	C1—C2	1.509 (5)
Fe1—O1 ⁱⁱⁱ	2.0663 (17)	C2—C3	1.378 (3)
Fe1—O2	2.199 (2)	C2—C3 ^v	1.378 (3)
Fe1—O2 ⁱ	2.199 (2)	C3—C3 ^{vi}	1.377 (5)
O1—C1	1.250 (2)	С3—Н3	0.9300
O2—C4	1.185 (8)	C4—H4	0.9300
O2—C4 ^{iv}	1.185 (8)	С5—Н5А	0.9600
O2—Fe1 ^{iv}	2.1987 (19)	С5—Н5В	0.9600
N1—C4 ^{iv}	1.327 (7)	С5—Н5С	0.9600
N1—C4	1.327 (7)	С6—Н6А	0.9600
N1—C5	1.384 (8)	С6—Н6В	0.9600
N1—C5 ^{iv}	1.384 (8)	С6—Н6С	0.9600
N1—C6	1.422 (9)		
O1 ⁱ —Fe1—O1 ⁱⁱ	85.05 (13)	C4 ^{iv} —N1—C6	68.7 (6)
O1 ⁱ —Fe1—O1	180.0	C4—N1—C6	114.6 (7)
O1 ⁱⁱ —Fe1—O1	94.95 (13)	C5—N1—C6	112.8 (8)
O1 ⁱ —Fe1—O1 ⁱⁱⁱ	94.95 (13)	C5 ^{iv} —N1—C6	63.9 (8)
O1 ⁱⁱ —Fe1—O1 ⁱⁱⁱ	180.00 (7)	C4 ^{iv} —N1—C6 ^{iv}	114.6 (7)
O1—Fe1—O1 ⁱⁱⁱ	85.05 (13)	C4—N1—C6 ^{iv}	68.7 (6)
01 ⁱ —Fe1—O2	87.49 (7)	C5—N1—C6 ^{iv}	63.9 (8)

supplementary materials

O1 ⁱⁱ —Fe1—O2	92.51 (7)	$C5^{iv}$ —N1— $C6^{iv}$	112.8 (8)		
O1—Fe1—O2	92.51 (7)	C6—N1—C6 ^{iv}	176.7 (10)		
O1 ⁱⁱⁱ —Fe1—O2	87.49 (7)	O1 ^v —C1—O1	126.4 (3)		
O1 ⁱ —Fe1—O2 ⁱ	92.51 (7)	O1 ^v —C1—C2	116.81 (16)		
O1 ⁱⁱ —Fe1—O2 ⁱ	87.49 (7)	01—C1—C2	116.81 (16)		
O1—Fe1—O2 ⁱ	87.49 (7)	C3—C2—C3 ^v	118.3 (3)		
O1 ⁱⁱⁱ —Fe1—O2 ⁱ	92.51 (7)	C3—C2—C1	120.87 (17)		
O2—Fe1—O2 ⁱ	180.0	C3 ^v —C2—C1	120.87 (17)		
C1—O1—Fe1	134.27 (19)	C3 ^{vi} —C3—C2	120.86 (17)		
C4—O2—C4 ^{iv}	51.8 (8)	C3 ^{vi} —C3—H3	119.6		
C4—O2—Fe1	120.26 (12)	С2—С3—Н3	119.6		
C4 ^{iv} —O2—Fe1	120.26 (12)	O2-C4-N1	131.1 (7)		
C4—O2—Fe1 ^{iv}	120.26 (12)	O2—C4—H4	114.4		
C4 ^{iv} —O2—Fe1 ^{iv}	120.26 (12)	N1—C4—H4	114.4		
Fe1—O2—Fe1 ^{iv}	111.87 (15)	N1—C5—H5A	109.5		
C4 ^{iv} —N1—C4	45.9 (7)	N1—C5—H5B	109.5		
C4 ^{iv} —N1—C5	178.5 (7)	N1—C5—H5C	109.5		
C4—N1—C5	132.6 (6)	N1—C6—H6A	109.5		
C4 ^{iv} —N1—C5 ^{iv}	132.6 (6)	N1—C6—H6B	109.5		
C4—N1—C5 ^{iv}	178.5 (7)	N1—C6—H6C	109.5		
C5—N1—C5 ^{iv}	49.0 (12)				
01 ⁱⁱ —Fe1—O1—C1	-80.3 (4)	Fe1—O1—C1—O1 ^v	29.3 (7)		
O1 ⁱⁱⁱ —Fe1—O1—C1	99.7 (4)	Fe1—O1—C1—C2	-151.3 (3)		
O2—Fe1—O1—C1	12.5 (3)	O1 ^v —C1—C2—C3	180.0 (4)		
O2 ⁱ —Fe1—O1—C1	-167.5 (3)	O1—C1—C2—C3	0.6 (6)		
O1 ⁱ —Fe1—O2—C4	-17.2 (4)	O1 ^v —C1—C2—C3 ^v	-0.6 (6)		
O1 ⁱⁱ —Fe1—O2—C4	-102.1 (4)	O1—C1—C2—C3 ^v	180.0 (4)		
O1—Fe1—O2—C4	162.8 (4)	C3 ^v —C2—C3—C3 ^{vi}	1.0 (10)		
O1 ⁱⁱⁱ —Fe1—O2—C4	77.9 (4)	C1—C2—C3—C3 ^{vi}	-179.6 (5)		
O1 ⁱ —Fe1—O2—C4 ^{iv}	-77.9 (5)	C4 ^{iv} —O2—C4—N1	0.0		
O1 ⁱⁱ —Fe1—O2—C4 ^{iv}	-162.8 (4)	Fe1—O2—C4—N1	-106.5 (2)		
O1—Fe1—O2—C4 ^{iv}	102.1 (5)	Fe1 ^{iv} —O2—C4—N1	106.5 (2)		
O1 ⁱⁱⁱ —Fe1—O2—C4 ^{iv}	17.2 (4)	C4 ^{iv} —N1—C4—O2	0.0		
O1 ⁱ —Fe1—O2—Fe1 ^{iv}	132.46 (6)	C5 ^{iv} —N1—C4—O2	0.00 (5)		
O1 ⁱⁱ —Fe1—O2—Fe1 ^{iv}	47.54 (6)	C6—N1—C4—O2	0.000 (2)		
O1—Fe1—O2—Fe1 ^{iv}	-47.54 (6)	C6 ^{iv} —N1—C4—O2	180.000 (2)		
O1 ⁱⁱⁱ —Fe1—O2—Fe1 ^{iv}	-132.46 (6)				
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+1$, y , z ; (iii) x , $-y+1$, $-z+1$; (iv) $-x+1$, $-y+3/2$, z ; (v) x , $-y+3/2$, z ; (vi) $-x+1/2$, y , $-z+1/2$.					

Fig. 1